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Received 17 October 1988 

Abstract. Numerical hammagraphy is used to determine the statistical distribution of knots 
which are confined to a thin layer. The statistics used are based on more than 2 x 10' knots. 
Among various striking features is a marked regularity in the occurrence of the prime knots. 

1. Introduction 

During the last decade a number of authors have studied the statistics of knots in e.g. 
polymer rings. The study of knots and links by means of numerical enumeration, also 
called numerical hammagraphy, forms the subject of various reviews; cf Frank- 
Kamenetskii and Vologodskii (1981) or Michels and Wiegel (1986) and references 
quoted therein. The majority of these studies are restricted to calculating the probability 
of a knot occurring in a polymer of a given number of monomers. 

In this paper, numerical hammagraphy is used to determine the full distribution 
of Alexander polynomials, which shows the probabilities with which the various knots 
occur. In order to reach a sufficient level of reliability, a very large number of 
configurations (10' to lo6) have to be generated. As a first step in this direction, we 
studied knots which are confined to a thin layer (i.e. a quasi-two-dimensional system); 
this leads to a higher probability for knots than for free rings in a three-dimensional 
space. Besides, with this model a unique relation can be obtained between the 
occurrence of knots and the number of crossings in the projection on a plane. Moreover, 
it may be noted that the formation of polymers in real systems commonly occurs in 
confined space, i.e. at catalytic surfaces and boundaries. For all definitions and detailed 
numerical procedures, the reader is referred to Michels and Wiegel (1986). 

The most striking results of the present study are as follows: 
( a )  the probability that a closed polymer configuration is a knot increases with 

( b )  the probability that a given knot will be a prime knot decreases with length; 
( c )  the probabilities for the various prime knots with a j x e d  number ofdouble points 

the length; 

in rhefully reduced state seem to be independent of the length of the polymer. 

0305-4470/89/ 132393 +06$02.50 @ 1989 1OP Publishing Ltd 2393 



2394 J P J Michels a n d  F W Wiegel 

2. Methods 

Using the Brownian dynamics method described previously (Michels and Wiegel 1982) 
closed rings of N points are generated in a plane A. The distance between neighbouring 
points equals 1. Generally, a configuration will show a certain number ( n d )  of double 
points. A random number generator was used for a given double point, to define one 
branch as the overpass and the other branch as the underpass. This leads to knots 
confined to a thin layer around the plane A. This procedure was followed for N = 16, 
24, 32, 40. For each value of N, 100005 configurations were generated; for each 
configuration, the assignment of over- and underpasses was realised five times. Hence, 
our statistics extend over 4 x 5 x 100 005 = 2000 100 knots. 

For each configuration, the analysis proceeded in two steps: a global step and a 
detailed one. The first step consisted of determining the number of double points ( n d )  
and the radius of gyration ( S / l ) .  Also, for each of the five knots pertaining to this 
configuration, lA( - 1)1 was calculated, where A( t )  denotes the Alexander polynomial. 
If IA(-l)l= 1 ,  the knot is regarded as trivial, otherwise the knot is assumed to be 
non-trivial. This simple and easily applicable criterion was introduced by Vologodskii 
et a1 (1974) and used thereafter by several authors. Nevertheless, it is known to be 
approximate only: using this method, a few knots turn out to be indicated erroneously 
as ‘trivial’, e.g. the knots and I O l 5 , ,  which are the simplest knots with this feature. 
For this first analysis, it was assumed that the errors introduced in this manner are 
statistically insignificant. The probability ( l )  that a knot is trivial was calculated by 
neglecting this error. Non-trivial knots were subjected to further analysis. 

The second step, applied to the non-trivial knots only, starts with a reduction 
procedure (described by Michels and Wiegel 1982, 1986, Michels 1987) which elimi- 
nates some or most of the double points without changing the topology of the knot. 
Actually, this procedure was applied only to knots with nd 2 1 1 .  The remainder of our 
analysis was performed only on those knots which had, if necessary after application 
of the reduction procedure mentioned above, less than 11 double points (the ‘remaining 
knots’). Note that, due to the preselection procedure of non-trivial knots, the knots 
lolz4 and 

For all the remaining knots, the full Alexander polynomial A( t )  was calculated. 
This polynomial was compared with a complete list of the Alexander polynomials for 
all knots (prime and non-prime) with at most 10 double points. This list was compiled 
from: ( a )  the monograph of Rolfsen (1976); ( b )  omission of knot which was 
shown by Perko (see Thistlethwaite 1985) to be identical to knot (c )  inclusion 
of the Alexander polynomials of the non-prime knots which were calculated by 
multiplication of the Alexander polynomials of the constituent prime knots. Strong 
evidence for the completeness of our list is the fact that all of the 0(106) Alexander 
polynomials calculated could be traced back in this list. 

were not present in this residue. 

3. Results 

In table 1 ,  the global results of the first step in the analysis are listed. More detailed 
information is displayed in figures 1 and 2. In each of these figures, the relevant 
quantity (& and ( S 2 ) / 1 2 )  is displayed as calculated for one particular value of N, as 
a function of nd.  Figure 3 shows the probability P for one particular value of N of 
finding a ring with nd double points. 
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Table 1. Global properties of knots confined to a thin layer. The first column gives the 
number N of repeating units; the second column gives the fraction of unknotted rings. 
In the third column the average of the square (S' )  of the radius of gyration is listed in 
units 1'. The last column gives the average number (rid) of double points of the original 
configurations. 

16 0.723 1 . 4 4 1  6.806 
24 0.529 2.126 12.23 
32 0.378 2.816 18.17 
40 0.264 3.498 24.56 
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Figure 1. The fraction lN of unknotted rings (for N = 16 (O) ,  24 (+), 32 (A) ,  40 (V)) 
subdivided according to the number of double points ( n d )  in the original configuration. 
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Figure 2. The value of ( S 2 ) / I 2  (for N = 16 ( 0 ) , 2 4  (e), 32 (A) ,  40 (V)) subdivided according 
to the number of double points ( nd) in the original configuration. 
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Figure 3. The probability PN (for N = 16 (O),  24 (O) ,  32 (A), 40 (V)) of finding a ring 
with nd double points in the original configuration. Note that XFdx0 PN = 1. 

Now consider the non-trivial knots which-after the preliminary reduction pro- 
cedure-have nd = 3,4, . . . , 10 double points. Their Alexander polynomials were com- 
pared with the complete list mentioned in 0 3, in which all fully reduced knots were 
ordered in classes such that class H consists of all fully reduced knots (prime as well 
as non-prime) with H double points. Within a class, the numbering follows that used 
by Rolfsen (1976); non-prime knots are represented by a product of the constitutent 
prime knots. From this, the distribution of knots is calculated and displayed in 
table 2. 

Starting with class 5 ,  one runs into the phenomenon of non-uniqueness of the 
Alexander polynomial (homonomy): two different knots sometimes have the same 
Alexander polynomial. For such a pair, it turns out that the knot in the lowest class 
(thus with the lowest value for H) has the highest probability. For classes differing 
by 2 or more, the probabilities differ by at least two orders of magnitude. In this case, 
all realisations were counted as part of the lowest class, with the exception of a small 
correction based on the average probability of the knots in the highest class. If the 
classes differ by 0 or 1,  all realisations were omitted from the statistics. 

Classes with H 2 6 also include non-prime knots. It is of some interest to consider 
also the prime knots by themselves. In table 3, their probabilities are listed for class 
H = 6 and 7.  For H 2 8, the results were not analysed any further, because the large 
number of different knots leads to a small number of realisations per knot and, hence, 
to poor statistics. 

4. Discussion 

Table 1, column 2, shows that the probability that a closed polymer configuration is 
a knot increases with the length. This result conforms with the general findings obtained 
by numerical hammagraphy for other polymer chain models. Moreover, Sumneis and 
Whittington (1988) proved this relation conclusively from theoretical arguments for 
model chains on a lattice. Table 2, moreover, shows that the probability that a knot 
is non-prime increases with length. Both table 2 and table 3 show that the probabilities 
for the various prime knots with an equal number of double points in the fully reduced 
state seem to be independent of the length of the polymer. 
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Table 2. Detailed statistics of knots confined to a thin layer. The first column denotes the 
numbering used by Rolfsen, expanded by product notation for non-prime knots. The 
following four columns give the distribution (in per cent) within each class (for class H = 8, 
100% corresponds only to the analysed knots; cf 5 3). The number M denotes the total 
number of analysed knots within each class. 

N = 1 6  N = 24 N = 32 

H, % M YO M Yo M 

100 

100 

36.9 
63.1 

21.8 
33.0 
18.6 
26.6 

6.1 
10.2 
12.4 
9.3 

15.4 
16.9 
9.1 

10.6 

2.9 
5.7 
1.7 
6.7 
2.4 
5.8 
7.2 
7.2 
5.6 
2.1 
8.1 
1.6 
2.8 
2.7 
8.4 

12.1 
14.5 
2.5 

100 
68 974 85 762 

100 
16 820 23 103 

35.8 
64.2 

16 815 24 040 

18.6 
27.3 
15.8 
38.3 

11 243 21 264 

4.9 
9.2 
9.6 
7.5 

13.1 
15.0 
8.3 

32.4 
4 955 10 328 

2.6 
4.5 
1.3 
4.9 
2.0 
4.4 
5.7 
6.0 
4.0 
2.0 
6.3 
1.8 
1.6 
1.6 
6.7 

14.7 
25.4 

4.5 
2 373 5 452 

100 
83 288 

100 
23 550 

35.4 
64.6 

25 382 

17.2 
23.2 
14.1 
45.5 

26 222 

3.7 
8.4 
8.5 
6.4 

11.3 
14.3 
7.3 

40.1 
13 278 

2.8 
3.7 
1.2 
4.4 
1.4 
4.2 
4.8 
5.6 
2.1 
1.7 
5.0 
1.6 
1.5 
1.4 
4.8 

17.3 
30.4 

5 . 5  
7 666 

N = 4 0  

M % 

100 
72 668 

100 
20 763 

35.2 
64.8 

22 844 

15.2 
20.9 
12.6 
51.3 

26 983 

3.8 
7.4 
8.2 
5.3 

10.5 
12.7 
6.6 

45.5 
13 363 

2.3 
3.4 
1.1 
3.8 
1.3 
3.9 
3.9 
4.6 
2.2 
1.7 
4.7 
1.2 
1.4 
1.2 
4.6 

18.8 
33.6 

6.3 
8 424 



J P J Michels and F W Wiegel 

Table 3. Results for the probabilities of prime knots only within classes H = 6 and 7 as a 
function of chain length. 

Hs N = 16 N = 2 4  N = 3 2  N =40 

7, 
72 
73 
74 
75 
76 
7, 

29.7 
45.0 
25.3 

7.7 
12.8 
15.6 
11.7 
19.4 
21.3 
11.5 

30.2 
44.2 
25.6 

7.2 
13.7 
14.2 
11.1 
19.3 
22.3 
12.2 

31.6 
42.6 
25.9 

6.2 
14.0 
14.1 
10.7 
19.0 
23.8 
12.2 

31.3 
42.9 
25.9 

7.0 
13.5 
15.2 
9.7 

19.2 
23.3 
12.1 

One also notices that the ratio of the probabilities for the most likely and least 
likely prime knots increases sharply with the class number H. This was also observed 
for H = 9 and H = 10: for H = 9 the ratio is of the order 20, for H = 10 still larger. 
The most likely prime knot in class 9 is 944, followed by 942 with a constant ratio of 
roughly $. Knots with a remarkably low probability in this class are 9, ,  934, 935, g4,, 
and 94, (cf the drawings in Rolfsen 1976). For the record only, we mention that the 
most prevalent prime knot in class 10 is once again, this is found for all polymer 
lengths. 

References 

Frank-Kamenetskii M D and Vologodskii A V 1981 Usp. Fiz. Nauk 134 641-73 (Sou. Phys.-Usp. 24 679-96) 
Michels J P J 1987 Comput. Phys. Commun. 44 289-95 
Michels J P J and Wiegel F W 1982 Phys. Lett. 90A 381-4 
- 1986 Roc. R. Soc. A 403 269-84 
Rolfsen D 1976 Knots and Links (Berkeley, CA: Publish or Perish) 
Sumners D W and Whittington S G 1988 J. Phys. A: Math. Gen. 21 1689-94 
Thistlethwaite M B 1985 Knot Tabulation and Related Topics (London Math. Soc. Lecture Notes 93) 

Vologodskii A V, Lukashin A V, Frank-Kamenetskii M D and Anshelevich V V 1974 Sou. Phys.-JETP 39 
(Cambridge: Cambridge University Press) p 11 

1059-63 


